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Abstract—In this paper we address the controlled complete
AutoRegressive Moving Average Independent Process Analigs
(ARMAX-IPA; X-exogenous input or control) problem, which
is a generalization of the Blind SubSpace Deconvolution (BSD)
task. Compared to our previous work that dealt with the
undercomplete situation, (i) here we extend the theory to
complete systems, (ii) allow an autoregressive part to be psent,

deblurring, image restoration [40], (iii) speech enhaneem
using microphone arrays, acoustics [41], [42], [43], [44],
(iv) multi-antenna wireless communications, sensor nete/o
[45], [46], (v) biomedical signal—EEG, ECG, MEG (Mag-
netoEncephaloGraphy), fMRI—analysis [47], [48], [49]i)(v
optics [50], and (vii) seismic exploration [51].

(i) and include exogenous control. We investigate the cas
when the observed signal is a linear mixture of independent
multidimensional ARMA processes that can be controlled. Ou
objective is to estimate the ARMA processes, their driving
noises as well as the mixing. We aim efficient estimation by
choosing suitable control values. For the optimal choice of
the control we adapt the D-optimality principle, also known
as the ‘InfoMax method’. We solve the problem by reducing
it to a fully observable D-optimal ARX task and Independent
Subspace Analysis (ISA) that we can solve. Numerical exangs
illustrate the efficiency of the proposed method.

The simultaneous assumption of the two extensions, that
is, ISA combined with BSDseems to be a more realis-
tic model than either of the two models alone and has
recently been introduced in the literature under the name
of Blind SubSpace Deconvolution (BSSD). For example, at
the cocktail-party, groups of people or groups of musicians
may formindependent source groups and echgesld be
present. It has been shown that the undercomplete case of
the BSSD problem can be reduced to ISA by means of (i)
temporal concatenation [20] or (ii) Linear Predictive Appr

Recently, research on Independent Component Analyé ation (LPA) [52]. Using the first approach the associated

(ICA) [1], [2] and its extensions has gained much attentioH A problem can easily become ‘high dimensional’, this

One can think of ICA as a cocktail-party problem, Wheréﬂimensionality proble_m can be circumvented by applying
there areD microphones] one-dimensionasound sources, the LPA based reduction scheme. The LPA method has been

and the task is to estimate the original sources from teextended to Integrated ARMA (ARIMA-IPA) processes [53],

observed mixed signals. For a recent review about ICA s éjt.the framework d.e‘?‘“ With. the undercomplete case and the
3], [4], [5]. estimation of the driving noises only.

Applications, wheranly certain groupf the sources are It has been shown in a recent work [54] that the parameters
independent may be highly relevant in practice. For exampland the driving noise of controlled dynamical systems (ARX
at the cocktail-party, groups of people or groups of musia models: AutoRegressive process with eXogenous inputs) can
may form independent source group3his task is called be efficiently estimated by means of D-optimality princi-
Independent Subspace Analysis (/346]. The large number ples. This theory, which allows control variables, has been
of different ISA algorithms [6], [7], [8], [9], [10], [11], 12], formulated only for thefully observablecase. By contrast,
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], R3], the ‘ICA' problem family can model hidden independent
[24], [25], [26], [27], [28], [29], [30], [31] shows the impe variables, but camat account forcontrol.
tance of this field. Successful applications of ISA involve: _ _ N
(i) the processing of EEG-fMRI (ElectroEncephaloGraphy, We un|fy_ anql generalize these_ directions: we t.rgat D-
functional Magnetic Resonance Imaging) data [7], (ii) gemg_ptlmal estimation of_ controlled independent multidimen-
analysis [32], [33], [34], (iii) face view recognition [35]36], sional hidden dynamical systems, ARMAX processes. Be-

and (iv) ECG (ElectroCardioGraphy) analysis [12], [15]. yond _this ext_e_nsion, we estimate th_e_ independent multidi-
Another extension of the original ICA task is the B”ndmensmnal driving noises and the mixing process, too. Our

Source Deconvolution (BSD) problem. Such a problermethOd may offer important extension possibilities for ICA
emerges, for example, at a cocktail-party being held in a:i).pplications. Such potential applicat_ions moti_vate ourkwo
echoicroom. Several BSD algorithms have been developede'®: We present the necessary basic theoretical stepseFut

over the last decades, for a review see [37]. BSD shovPPlications, where interaction (°X’) with the environmes
potentials in the following areas: (i) remote sensing apli present, may include for example, human-computer interac-

tions; passive radar/sonar processing [38], [39], (ii) gexa tion serving the user.

I. INTRODUCTION

. . , . o The paper is structured as follows: In Section Il we review
Department of Information Systems, E6tvds Lorand Univgr&dzmany - . e .
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dras.lorincz@elte.hu)©2009 IEEE. International Joint Conference on Neu-Section Il defines the problem domain, the Controlled
ral Networks (IJCNN), pages 3038-3045, Atlanta, Georgi8AUJune 14- ; _
19, 2009.ht t p: / / dx. doi . or g/ 10. 1109/ | JCNN. 2009. 5178797. ARMA _Independent P_rocess AnalySIS (ARMAX IPA). task.
In Section IV we detail our method. Section V contains nu-

1ISA is also called Multidimensional Independent Compongnalysis, A ' _ )
subspace ICA and group ICA in the literature. merical illustrations and conclusions are drawn in Sectibn



II. D-OPTIMAL IDENTIFICATION OF ARX MODELS IIl. THE COMPLETEARMAX-IPA M ODEL

We sketch the basic thoughts that lead to D-optimal Here, we define the ARMAX-IPA (AutoRegressive Mov-
identification of ARX models. The dynamical system is fullyi"d Average Independent Process Analysis with eXogenous

observed and evolves according to the ARX equation input) task. Assume that we hawé multidimensional inde-
pendent noise processes that drive multidimensional ARMA
L Ly—1 processes that we can influence (control). Suppose also that
St = Z Fisi_; +e;+ Z Bru_g, (1)  only their
i=1 k=0
L L. L,—1
where St = Z Fisi_i+e + Z Hje,; + Z Biui—, (4)
i=1 j=1 k=0

e s € RP: e € RP (D, = D,) represent the state of
the system and the noise, respectively

« u € RP« represents the control variables, and

« polynomial matrix

Xy = ASt (5)

mixture is available for observatiénwhere

e x; € RPes, = [sh...;sM] € RP:, e =
L _ le};...;eM] € RP- (D, = D,.) represent the observa-
F[z]=1- Z F;z2* (2) tion, the state of the system and the noise, respectively,
i=1 o u; € RP« stands for the control variables at thé
. ] . ) . time instant,
(given by matriced; € R”:*P- and identity matrixt) o A € RP=xDe s the mixing matrix,
is invertible, that is o s emeRY (m=1,...,M).
det(F[2]) 0, 3) Denoting the time-shift operation by one may write (4)-(5)
compactly as
for all z € C, |Z| <1. F[Z]SZH[Z]G—FB[Z]U, (6)
Our task is the efficient estimation of x = As, (7)
1) the parameter® = [Ouynamics; Onoise). that is ) i .
Ouynamics = [F1,...,Fp . Bq,...,By,_1] that de- using polynomial matrices
termine the dynamics and noise parame®rs,; ., L,
2) the noisee that drives the process Flz] =1— Z F;z' € R[z]Ps*Ps (8)
by the ‘optimal choice’ of control valuea. Formally, D- iLzl
optimality aims to maximize one of the two objectives < .
pHmaity ) H[:] =1+ H,2 € R[z]P*Dr, 9)
Jpar(ut) = I(@, St|st—la St—2,..., U, Ug—1, .- -)7 I 7'17.:1
Jnoise(ut) = I(et,st|st_1,st_2,...,ut,ut_l,...) B[Z] — Z Bka ER[Z]DSXD“, (10)
k=0

for u;, € U C RP«. In other words, we choose control
valueu from the achievable domaiii such that it maximizes Our assumptions are the following:

the mutual information between the next observation and the. The problem is completed := D, = D, = D,..
parameters (or the driving noise) of the system. It can be . Polynomial matrice¥[z], H[z], and A are invertible.

shown [54], that if « Driving noisese™ of processes™ are independent like
« © has matrix Gaussian, in the ISA task and fullfill the ISA assumptions. In other
« e has Gaussian, and words,e™s are
« the covariance matrix oé has inverted Wishart distri- — independenti(e!,...,eM) = 0, wherel denotes
butions, the mutual information,

— i.i.d. (independent identically distributed) in
— and there is at most one Gaussian amongethis.

Note: there is no block-diagonal restriction on polyno-
mial matricesF[z] and H|[z].

then in the Bayesian setting

« maximization of theJ objectives can be reduced to the
solution of a quadratic programming task,

« priors of ® ande remain in their supposed distribution } ) .
family and undergo simple updating. Our task is to estimate the unknown mixing matrk,

i . hidden processes™ and their driving noisege™ by means
The considerations allow for control, but assume full obser ¢ ypservationsc only.

ability about the state variables. Now, we extend the method
to hidden variables, to ARMA processes in the ARMAX-IPA  2pe0 10 1. .

i denote the number df;, H;, B, matrices in the
model of the next section. respective sums.



IV. METHOD Table I: Pseudocode of the ARMAX-IPA algorithm.
Input of the algorithm

Below, we present our solution for the ARMAX-IPA task. AR order: L',
According to our assumptiorH|[z] can be inverted, so we control order:L,
multiply (6) by (H[=])~" from the left, use the invertibility | o vsevaionxdet...r
of matrix A and substitute relation D-optimal ARX estimation:
fort=1,...,T
s — A 1x (11) Using x; update D-optimally the distribution of

O;=[F11,...,Fr +,Boy,....Brs 1]
Estimate the innovation process = Ae;:
’

that follows from (7) and get R o L1
€t =xt — (0 Fipxe—i + 2 %0 Br,eW_x)

-1 1, _ -1 end )
(H[z])" ' F[z]A" x = e+ (H[2])” B[z]u. (12) ISA estimation: on {&;};—1, .1 = demixing matrix: Wisa
Estimation
Now, multiplying this equation byA from the left we have Estimated driving noiseé = Wisaé

Estimated sources = Wsax

AH[2))'Fz]A 'x = Ae + A(H[z]) 'B[z]Ju. (13)

In (13), the main coefficient of the polynomial matrix on V. ILLUSTRATIONS

the left hand side isl giving rise to an ARfc) form. Here, we illustrate the efficiency of the proposed complete

BecauseAe can be considered as an approximately Gaussiafr\Max-IPA estimation technique. Test cases are introduced
variable according to the d-dependent central limit theore;, section VLA, To evaluate the solutions we use a perfor-

[55], we can apply the D-optimal ARX approximation for jance measure given in Section V-B. Numerical results are
(13) in order to estimate noisée. The result can be ,.acanted in Section V-C.

seen as the observation of an ISA problem because the
e™ e R% components oé are independent. ISA techniquesA. Databases

can be used to identifA ande™. Our estimation fors is We define three databases) o study our identification
s=A"'x algorithm. The databases are depicted in Fig. 1.
It can be shown [56] that AR estimation of order 1) ABC databaseiln the ABC database, hidden sources
s e™ were uniform distributions on 2-dimensional images
p=o0(T3) —— o0 (14) (d,, = 2) of the English alphabet. The number of compo-

nents wasM/ = 4, and thus the dimension of the source was
for the inverse of polynomial matriXi[z] gives rise to p — 8. For illustration, see Fig. 1(a).
an asymptotically consistent estimation. Thus, takin@ int 2) Tale databaseThe tale test has 2-dimensional source
account (13), we shall apply ARX estimations with thecomponents generated from drawings of fairy tale charscter
following orders (d,, = 2).2 Sourcese™ were generated by sampling 2-
, dimensional coordinates proportional to the correspandin
Ly=p+Ls, (15) pixel intensities. In other words, 2-dimensional images of
L, =p+ L. (16) tale characters were considered as density functibhs: 4
was chosen, thus the dimension of the hidden source was
For the particular choice gf, see Section V-C. D = 8. For illustration, see Fig. 1(b).

Note: 3) 3D-geom databasein the 3D-geomtest e™s were

1) In the above described complete ARMAX-IPA techFandom variables uniformly distributed on 3-dimensional
nique, the D-optimal ARX procedure is an onlinegeometric formsd,,, = 3). We chose 3 different components
estimation for the innovatioe = Ae, the input of (M = 3)and, as a result, the dimension of the hidden source
the ISA method, for fixegh. Online ISA method o IS D = 9. For illustration, see Fig. 1(c).
would enable online estimation of the inverse of matrixy  performance Measure, the Amari-index

A and then the estimation afande. In the absence R ¢ e (ande™ biect
of an efficient online ISA estimation, the ISA step was Ecovery ot source compone (ande™) are subjec

executed in batch mode. For one-dimensional hidde the ambiguities of the ISA task. Namely, components

sources d,, — 1, ¥m) efficient online ICA methods of equal dimension can be recovered up to permutation
e.g., [57] WZ:ouId,be used here " and invertible transformation within the subspaces [6@jt L

2) The pseudocode of our method can be found in TabIe?‘S suppose that the hidden components are d-dimensional

3) In the absence of controL({, = —1) one can apply a

d = dp). Then, in the ideal case, the product of the
simple AR fit instead of the ARX estimation. Efficient estimated ISA demixing matriWisa and mixing matrix
AR fit methods can be found in [58], [59]. These

A, that isG := WisaA € RP*D s a block-permutation
methods use least squares estimations for AR fit, ggatrix with d x d sized blocks. This block-permutation
recursive online estimations are feasible here.

3See http://www.smileyworld.com.



« distributions of coordinates of polynomial matr|z|
3 B :@ /3 @ hgﬁ were independent and normal,
= Qﬁ? « controlu was limited to a hypercube

C U := {u € RPw . max }|Uz| < 5u}7 (20)
(

'_ A i€{1,..., Dy,
D * @ with upper limit§,, equal t00.1,
) (b) (©)

« sample numbef” varied betweeri, 000 and 20, 000,

. . « dimension of the control was equal to the the dimension
Figure 1: lllustration of theABC (a), tale (b), and3D-geom of s (D, = D)

(c) datasets.

a

o invertibility parameters A, and X. of poly-
nomial matrices F[z] and H][z], respectively

. were chosen independently from the set
structure can be measured by the Amari-index. Namely, let {0.4,0.5,0.6,0.7,0.8,0.85, 0.9, 0.95}

matrix G € RP*P pe decomposed inta x d blocks:
G=[G"Y], ., - Letg" denote the sum of the absolute o
values of the elements of matif%’/ € R%*¢, We normalized p=|T3 w0 |, (21)
the ISA adapted version [15], [16] of the Amari-error [61]
into interval [0, 1] [62]:

« orderp of the AR approximation (see Section IV) Was

thus the orders in the D-optimal ARX estimation were
(see (15)-(16))

1 L (g7 I = T4 wm| + L (22)
[ — == _ = 371000 | + L,
r(G): oM (M — 1) Z max; giJ b .
=1 L; = \_Tg_mj + Lu7 (23)
M M i
Z M -1, (17) « the ISA subtask on the estimated innovation, that is
o3\ maxigY on the estimation ofAe was carried out by the joint

f-decorrelation method [18].

We present our results for invertibility parametersand
A for matricesF[z] and H[z|, respectively for maximal

We refer to the normalized Amari-error as tAeari-index
One can see thal < r(G) < 1 for any matrix G, and
r(G) = 0 if and only if G is a block-permutation matrix

with d x d sized blocks sample numbefl" = 20,000. The average quality of the
' estimations is shown in Fig. 2, Fig. 3, and Fig. 4 for the
C. Simulations ABC, thetale, and the3D-geomdatabases, respectively. The
Results on databas@8C, tale and3D-geomare provided average quality is depicted by filled, 30 level contour plots
here. We focused on the following questions: for the studied parameter region betwegd — 0.95. One
1) The error of the source estimation as a function of th®&y conclude from these figures that our method
sample size. « provides reliable estimates for; and A. even if they
2) It is expected that if the roots oF[z] and H][z] are close to 1,

are close to the unit circle then our estimation will « is more sensitive for parametar, and
deteriorate. We investigated this by generating the  is robust up t0.9 in both parameters.

polynomial matrixF[z] andH][z] as follows: Estimation curves for the full, 000 < T' < 20,000 sample
L. interval and for(As, A.) = (0.4,0.4), (0.7,0.7), (0.85,0.85),
F[z| ZH(I—/\SOiZ) (IAs| < 1),  (18) ((_).970.85), (0_.970.9), (0.9,0.95) are provided in Fig. 8,
=0 Fig. 9, and Fig. 10 for théBC, thetale, and the3D-geom
L. databases, respectively. Estimation errors XorA. < 0.85
H[z] = H(I —AUjz) (JA| <1), (19) approximate a power law(T) oc T~¢ (¢ > 0) —manifested
j=0 by straight lines on log-log scale,— and this charactessti

where matricesO; and U; were chosen uniformly can be observed foh, = 0.9, too. Precise values (mean

(according to the Haar-measure) from the orthogon§¥ standard deviation) of the Amari-index are provided for
group,\s, A € R and the\, — 1, \. — 1 limits were sample number’ = 20,000 in Table Il, Table Il and
studied. Lo Table 1V, for theABC, thetale, and the3D-geomdatabases,

. r?spectively. These tables demonstrate that
The Amari-index was used to measure the performance o A ] _
the proposed complete ARMAX-IPA method. For each indi- * €Stimations fon,, . < 0.85 are highly precisel(-37%)

vidual parameterT, \,, \.), 20 random runs were averaged. ~ With small standard deviations,
‘Random run’ means random choice of quantitigs], H[=], « estimation errors start to increase around= 0.9: for
B[], A ande. In our simulations: Xe = 0.85, 0.9, 0.95 values estimation errors are about

e mixing matrix A was umformly distributed on the 4We found this choice op reliable in our numerical experiments within
orthogonal group, the studied parameter domain.
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Figure 2: Contour plot of the Amari-index as a function of the
sy Ae invertibility parameters on thABC database. Number
of samples:T = 20,000. For error curves and numerical Figure 4: Contour plot of the Amari-index as a function of

values, see Fig. 8 and Table Il, respectively. the \s, Ac invertibility parameters on thBD-geomdatabase.
Number of samplesT’ = 20,000. For error curves and
tale numerical values, see Fig. 10 and Table IV, respectively.
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As: Ae invertibility parameters on thtale database. Number

of samples:T" = 20,000. For error curves and numerical )

values, see Fig. 9 and Table Ill, respectively. e
oo

6 — 10% (ABO), 2 — 5% (tale), 5 — 11% (3D-geom a v
(C)]

database) with standard deviations being about the same
order of magnitude as the respective means.
Estimations with average Amari-indices are shown in Fig. 5;igure 5: lllustration of the estimations on tAdC dataset.

Fig. 6, and Fig. 7. According to these figures, our ARMAX-Number of samplesT” = 20,000. In (a)-(d): (As; Ae) =
IPA method can provide acceptable estimations up to abotft4,0.4). (a): observed signak(t). (c): estimation of the

(s, Xe) = (0.9,0.9) — (0.9, 0.95) values. Ae innovation, input of the ISA procedure. (d): estimated
component£™, recovered up to the ISA ambiguities. (b):
VI. CONCLUSIONS Hinton-diagram ofG, ideally a block-permutation matrix

In this paper we addressed the controlled complete AYYith 2 2 blocks. (e)-(i): the same as (d), but fox,, A.) =
toRegressive Moving Average Independent Process Analy§@7°0-7_)’ (0.85,0.85), (0'970'8_5)' ,(0'9’0'9)’ (0.9,0.95),
(ARMAX-IPA) problem. We treated the model of hidden'res.pectlvely. All the plotted estimations have average Ama
multidimensional ARMA processes (i) driven by hiddenindices, see Table II.
independent multidimensional noise processes, (ii) aleser
through their linear mixtures, and (iii) subject to exogeso
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Figure 6: lllustration of the estimations on tkede dataset.
Number of samplesT = 20,000. In (a)-(d): (A5, \e) =

(0.4,0.4). (a): observed signak(t). (c): estimation of the Figure 7:

(@) (b) (©
& x | 2
(d) (e)
k= X
U] (9)

¥ @

@
Illustration of the estimations on ti8D-geom

)

Ae innovation, input of the ISA procedure. (d): estimateqaiaset. Number of sample§ = 20,000. In (a)-(d):
components™, recovered up to the ISA ambiguities. (b):()\sy)\e) = (0.4,0.4). (a): observed signat(t). (c): estima-

Hinton-diagram of G, ideally a block-permutation matrix (jon of the Ae innovation, input of the ISA procedure. (d):
with 2 x 2 blocks. (e)-(i): the same as (d), but fox;, A.) =

(0.7,0.7), (0.85,0.85), (0.9,0.85), (0.9,0.9), (0.9,0.95),

respectively. All the plotted estimations have average Ama

indices, see Table

Table II: Amari-index in percentages on tHBC dataset

for different (), Ac) invertibility parameter pairs: mean
standard deviation. Number of sampl&s:= 20, 000. For
other (i) (As, Ac) pairs, (ii) sample numbers betwegrn00 <

T < 20,000, see Fig. 2 and Fig. 8, respectively. For the o

estimated componenés”, recovered up to the ISA ambigu-
ities. (b): Hinton-diagram ofz, ideally a block-permutation
matrix with 3 x 3 blocks. (e)-(i): the same as (d), but for
(Ass Ae) (0.7,0.7), (0.85,0.85), (0.9,0.85), (0.9,0.9),
(0.9,0.95), respectively. All the plotted estimations have
average Amari-indices, see Table IV.

ABC

. . h . . 10 _)\s=0'4’ Ae=0'4
illustration of the estimations, see Fig. 5. ---A=0.7, A =0.7
(s, 2e) = (0.4,0.4) [(Xs, Ae) = (0.7,0.7)[(As, Ae) = (0.85, 0.85) won A =0.85, A =0.85
T.11% (£0.27) 1.14% (£0.17) 2.40% (£2.30) _ -=-1_=0.9, A\ =0.85
Do he) = (09,085 0w, he) = (0.9,0.9)] (e, o) = (0.9,0.95) € , O A
6.24% (£8.76) 5.73% (£6.54) 9.40% (+11.76) TN, 8 A
T T S
e e U e
£
<
Table Ill: Amari-index in percentages on thale dataset
for different (), Ac) invertibility parameter pairs: mean

standard deviation. Number of sampl&s:= 20, 000. For
other (i) (As, Ac) pairs, (ii) sample numbers betwegrn00 <

T' < 20,000, see Fig. 3 and Fig. 9, respectively. For thesjqre 8: Amari-index as a function of the sample number on
illustration of the estimations, see Fig. 6.

Oy he) = (0.4,0.4)

(s, he) = (0.7,0.7)

(X5, Ae) = (0.85,0.85)

1.22% (£0.12)

1.23% (£0.15)

1.50% (£0.46)

(s, Xe) = (0.9,0.85)

D, M) = (0.9,0.0)

s, Ae) = (0.9,0.95)

2.07% (£1.37)

1.90% (+4.64)

475% (£4.01)

1 2 5 10
Number of samples (T/1000)

20

log-log scale for different, \. invertibility parameters on
the ABC database. For differerit\;, A\.) pairs (contour plot)
and numerical values, see Fig. 2 and Table I, respectively.



control. For the estimation, we adapted the D-optimality
principle. We divided the solution of the problem into two

tale . .

10° —— =204, _=04 parts, the estimation of a fully observable ARX problem and
---A=0.7, A =07 the Independent Subspace Analysis (ISA) task that we can

‘_‘:‘_‘iszg:g?’ ;ezg:gg solve. We also demonstrated the efficiency of the algorithm

S s ...i:o_g, )\2=o_9 on different datasets. Our simulations revealed that @ th
§ g | @ A=09, A=0.95 error of the estimation of the hidden sources decreases
T10" approximately in a power law fashion as the sample size

g increases and (ii) estimation is robust against values ®f th

S DR SRSk WG COME). it invertibility parameter. The problem family that we tredite
may gain applications among others in human-computer
T interaction serving the user.

20

2 5 10
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