
An Integrated
Architecture for
Motion-Control

and Path-Planning
v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v

Csaba Szepesvari´
Department of Photophysics
Institute of Isotopes of the Hungarian
Academy of Sciences
P.O. Box 77
Budapest, Hungary, H-1525
and
Research Group on Artificial Intelligence
University of Szeged
Aradi vrt. tere 1
Szeged, Hungary, H-6720

Andras Lorincz*´ ˝
Department of Photophysics
Institute of Isotopes of the Hungarian
Academy of Sciences
P.O. Box 77
Budapest, Hungary, H-1525
e-mail: lorincz@iserv.iki.kfki.hu

Received April 26, 1995; accepted September 10, 1997

We consider the problem of learning how to control a plant with nonlinear control
characteristics and solving the path-planning problem at the same time. The solution
is based on a path-planning model that designates a speed field to be tracked, the
speed field being the gradient of the equilibrium solution of a diffusionlike process
which is simulated on an artificial neural network by spreading activation. The
relaxed diffusion field serves as the input to the interneurons which detect the
strength of activity flow in between neighboring discretizing neurons. These neurons
then emit the control signals to control neurons which are linear elements. The

An Integrated
Architecture for
Motion-Control

and Path-Planning
v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v

Csaba Szepesvari´
Department of Photophysics
Institute of Isotopes of the Hungarian
Academy of Sciences
P.O. Box 77
Budapest, Hungary, H-1525
and
Research Group on Artificial Intelligence
University of Szeged
Aradi vrt. tere 1
Szeged, Hungary, H-6720

Andras Lorincz*´ ˝
Department of Photophysics
Institute of Isotopes of the Hungarian
Academy of Sciences
P.O. Box 77
Budapest, Hungary, H-1525
e-mail: lorincz@iserv.iki.kfki.hu

Received April 26, 1995; accepted September 10, 1997

We consider the problem of learning how to control a plant with nonlinear control
characteristics and solving the path-planning problem at the same time. The solution
is based on a path-planning model that designates a speed field to be tracked, the
speed field being the gradient of the equilibrium solution of a diffusionlike process
which is simulated on an artificial neural network by spreading activation. The
relaxed diffusion field serves as the input to the interneurons which detect the
strength of activity flow in between neighboring discretizing neurons. These neurons
then emit the control signals to control neurons which are linear elements. The

*To whom all correspondence should be addressed.

( ) ( )Journal of Robotic Systems 15 1 , 1]15 1998
Q 1998 by John Wiley & Sons, Inc. CCC 0741-2223/ 98/ 010001-15



v Journal of Robotic Systems—19982

interneuron to control-neuron connections are trained by a variant of Hebb’s rule
during control. The proposed method, whose most attractive feature is that it inte-
grates reactive path-planning and continuous motion control in a natural fashion, can
be used for learning redundant control problems. Q 1998 John Wiley & Sons, Inc.

1. INTRODUCTION

The subject of the paper is the learning of motion-
control by an artificial neural network. Different
aspects of the motion-control problem have been
dealt with in the literature, including motion plan-
ning and motion execution among fixed or moving

Ž .obstacles, known or previously unknown state-
space structures, and motion-control of objects with
different—and sometimes unknown—dynamical
properties. Comprehensive reviews of motion plan-
ning and motion-control are already available in the
literature.1,2

Throughout the paper it will be assumed that
the state-space of the plant is restricted to a bounded
region of Rn. Further, we presume that the relation
between control signals and motion of the plant is
given by

Ž . Ž . Ž .qsg q q f q u, 1˙
where q, q are, respectively, the state variable and˙
speed-vector of the plant, u is the control signal and
g : Rn ªRn, f : Rn ªRn=m are arbitrary C` func-
tions. Vast tracts of the control literature deals with
Ž .piecewise linear controllability questions regard-

Ž .3ing Eq. 1 . In the case of robot manipulator control
the state-space can be, say, the phase space or con-
figuration space of the manipulator. In the first case
Žwhen the state-space is the phase space of the

.manipulator it is known that a piecewise linear
control signal may be derived for any point-to-point
control problem. If the state-space is the configura-

Ž .tion space of a robot then Eq. 1 means that the
Žactuators are strong enough or equivalently that

.the motion is slow enough for us to be able to
neglect the robot’s mass. Later in the paper we
indicate how this assumption might be circum-
vented.

A path-planning task is defined by three con-
stituents, namely the free space F;Rn, the ‘‘start
state’’ and the ‘‘target state.’’ The problem then is to
find a control signal as a function of time that drives
the plant from the initial state to the target state
while the plant’s states are restricted to F. The
complement of F is called the obstacle space or the
forbidden zone. A path planning task is said to be
well-defined if it has a solution. The problem con-
sidered here is that of finding a generic computa-
tional scheme that solves any well defined path-
planning task.

Recently Lei4 and Glausius et al.5 have shown
that motion planning may be performed with the

Ž .help of an artificial neural network ANN algo-
Ž .rithm, namely a spreading activation SA type of

algorithm. Lei’s model is identical to the harmonic
function approach of Connolly and Grupen’s.6 The
main assumptions behind these models are the fol-
lowing:

A1: A discretization of the configuration space
is given.

A2: That nearest neighbor discretization points
Ž .are connected by a resistive discretized diffusive

network.



vSzepesvari and Lorincz: Integrated Architecture for Motion-Control´ ˝ 3

A3: A controller is given that can be employed
either for point to point control4,5 or for setting the
speed-vector of the plant at any point.6

The motion planning and execution procedure
are composed of the following four steps:

Step 1: Initialize the diffusive process by iden-
tifying start and target states along with forbidden

Ž .zones obstacles on the discretization.
Step 2: Start and relax spreading activation.
Step 3: Follow the gradient of the activity map

at the actual state using the given controller.
Step 4: Repeat steps 1]3 until the goal state is

reached.
The procedure is highly reactive and capable of

collision free path-planning in stationary and also
nonstationary environments provided that the rep-
resentation of the environment is updated suffi-
ciently often.a It can be shown that under appropri-
ate conditionsb the identified path is always close to
the optimal path. Moreover, the bounded region
between the path and the optimal path is a simply
connected region of the free space.

In this work we extend previous SA studies by
Ž .1 proposing the use of coarse coding for represen-

Ž .tations, and 2 completing the model with control
neurons that provide control signals. Coarse coding
is implemented by introducing overlapping spa-

Žtially tuned receptive fields this can be developed
by either a supervising or a self-organizing

7 ] 10.process for the discretizing units. An important
feature of the proposed controller is that it fits
assumptions A1 and A2 of the SA path-planning
algorithms, it being capable of tracking any speed
field as it implements a local approximation to the
inverse-dynamics of the plant. Moreover, since the
controller takes the form of a neural network, its
working mechanism is highly parallel. Accompany-
ing this, the control ‘‘knowledge’’ is stored in a
distributed form over the weights of a network.
Preliminary results relating to these issues were
published previously11 and indeed demonstrate the
feasibility of this approach.

In this article a computational example is pro-
vided that serves to illustrate certain points. Here, a
problem with a simple exact solution was chosen

a If the environment is static then a step-by-step recalculation of
the activity map is unnecessary.
b The condition should be that at any point the minimal flow
strength along the shortest path cannot be smaller than the flow
strengths along suboptimal paths.

for the opportunity of inspecting the model’s perfor-
mance. But while the problem considered seems
rather simple the case includes redundant control
that is hard for a machine to learn.12

The article is organized in the following way.
The next section offers a short summary of the
path-planning model utilized here and the SA
method that is used to implement the path-planning
model. Section 3 describes the architecture and
functioning of the proposed ANN. Pertinent numer-
ical results are afterwards presented in section 4,
then section 5 raises points about the learning of the
dynamics of the controlled system and the scaling
properties of the architecture. Finally some infer-
ences drawn are enumerated upon in the closing
section.

2. PRELIMINARIES

In this section we review the works of Lei,4

Keymeulen and Decuyper,13 Connolly and Grupen,6

Glasius et al.,5 and Marshall and Tarassenko14 that
served as the theoretical basis for our algorithm.
The neural SA method we consider can be viewed
as the discretization of the following diffusionlike
differential equation:

˙ Ž .fsDfq I , 2

Ž .where fsf q, t is the activity at a point q and
Ž . 2 2time t, Is I q is the external flow and Ds­ r­ x1

q­ 2r­ x 2 q ??? q­ 2r­ x 2 is the Laplacian operator.2 n
Ž .Let us denote the equilibrium solution of Eq. 2 by

f*sfU. Then the equation of motion of the plant isq
given by

Ž . Ž .qsk =f* q , 3˙

Žwhere k is a positive constant and =s ­r­ x ,1
.T­r­ x , . . . , ­r­ x is the gradient operator.2 n

The external flow is determined by the actual
plant-state taking the value of 1 at the actual state
and y1 at the target state, it being zero otherwise.
In this way activity flows from the actual state
towards the target state. The boundary conditions of

Ž .Eq. 2 may be chosen to ensure collision-free paths
< Žeither by the constraint ­fr­ n s0 Neumann­ F

. < Žboundary condition or by f s c Dirichlet­ F
.boundary condition , or a combination of the two.



v Journal of Robotic Systems—19984

2.1. Numerical Solution: The ANN Formulation

Discretization points or discretizing neurons are
evenly distributed in the state-space as the points of
a mesh. Every discretizing neuron i has an associ-
ated position c in the state space and the responsei
of a neuron to a state-space vector depends on its
position, each neuron being spatially tuned. With
the aid of the discretizing neurons the path-plan-
ning problem may be dealt with by distinguishing
four types of neurons: target neurons corresponding
to the target state, start neurons corresponding to the
start state, active neurons corresponding to the free-
space, and inactive neurons corresponding to the
forbidden region of the state space. It is furthermore
assumed that there is only one target and one start
neuron and that the set of active and inactive neu-
rons is disjoint. Then the degree to which every
neuron participates in any of the above classes is
either 0 or 1.

w Ž .xThe diffusion process Eq. 2 is simulated on
the discretizing layer by the following recurrent
equation:

Ž . Ž .s s I q s ys , igF , 4˙ Ýi i k i
kgN lFi

Žwhere F is the set of active neurons corresponding
.to the free space and N denotes the set of neigh-i

boring neurons at neuron i, and s is the dis-i
cretized version of the activity flow f at position c .i
The corresponding external signal I has a value ofi
0, 1, or y1, that is, I s1 if neuron i is the starti
neuron, I sy1 if neuron i is the target neuron, andi
I s0, otherwise. Because neurons lying outside thei
free-space are not involved in the computation acti-
vation avoids obstacle regions.

The subsequent state of the plant is associated
with a neuron representing the neighboring position
of the start neuron with the steepest activity drop.
Afterwards the plant is moved to the new state the
procedure is repeated. Namely, the path-planning
task is transformed onto the neuronal layer, spread-

Ž .ing activation SA starts and settles down and the
next state is determined according to the ‘‘gradient’’
of the equilibrium activation.

3. ARCHITECTURE AND FUNCTIONING

In this section we introduce the architecture and
functioning of the proposed control network. First,
the SA model of the previous section is extended to

plan smooth trajectories in a natural fashion. Then
the mathematical background of the combination of

w Ž .xthe control equation Eq. 1 and path generation
w Ž .xequation Eq. 3 are given. This combination moti-

vates an extension of the architecture with inter-
neurons, control neurons and control command
connections, which is described next. Finally, it is
demonstrated how associative direct inverse learn-
ing can be applied to estimate the optimal control
command vectors.

3.1. Coarse Coding and Gradient Estimation

Smooth trajectories are desirable in many applica-
tions. In the ANN model previously elaborated upon
there are two sources of nonsmooth trajectories.
They are

1. Discretizing neurons providing binary out-
puts.

2. One state of the plant corresponding to one
grid point.

In fact, the second implies the first, and if it is
relaxed then the first assumption yields an ambigu-

Ž .ous or inaccurate problem representation. Luckily,
this problem can be circumvented in the following
way:

First, the assumptions are relaxed by allowing
the neurons to develop continuous response signals
and enabling coarse coding at the same time. Our
discretizing units provide a gracefully overlapping
degrading spatially-tuned representation that can be
developed in a self-organizing fashion.8,9 The spa-
tially-tuned response of the discretizing units can
then be used to determine the ‘‘center of the recep-
tive field’’ by means of weighted averaging. Regu-
larization-based radial basis function networks7

represent another tool that can be utilized for devel-
oping a coarse coded representation. In this way a
fuzzy or coarse coded representation of the path-
planning problem is obtained that is advantageous
in many respects.15 In section 4 there is a figure
illustrating this coarse coding. As a consequence the
‘‘fuzzy set’’ of start, target, active, and inactive
neurons may actually overlap. For reasons of pru-
dence we classify neurons having above-threshold
obstacle activities as inactive neurons, while other
neurons are classed as active.

Second, since start and target neurons are no
longer unique the external flow I will be deter-i
mined by I ss rsy t rt, where s and t are thei i i i i
continuous start and target activities of neuron i,



vSzepesvari and Lorincz: Integrated Architecture for Motion-Control´ ˝ 5

respectively, and tsÝ t and ssÝ s are flowig F i ig F i
normalizing factors. The diffusion of activity is left
unchanged.

Third, since the plant’s state is not coarse coded
we now have to reconsider the implementation of

w Ž .xthe equation of motion Eq. 3 . First, the gradient
Ž .of the equilibrium flow f* q can be approximated

by the sum of the relevant directional derivatives,
the ‘‘geometry vectors’’ of neighboring neurons pro-
viding the directions used in the approximation.
The geometry vector between neurons i and j whose
center position are c and c is the vector that pointsi j
from c to c ; that is g sc yc . Denoting thei j i j j i
equilibrium activity at node i by s the gradient ofi
the equilibrium activity flow at node i is approxi-
mated by

Ž .d s I g , 5Ýi i j i j
jgN lFi

where

Ž . Ž .I s s ys w 6i j j i i j

is an approximation of the directional derivative of
s with respect to g at the point c , wherei j i

1
Ž .w s , jgN . 7i j i5 5c ycj i

The w values are defined only for neighboringi j
neurons and are called the strength of neighboring
connection between neurons i and j. Since the

� 4plant-state is represented by the blob s , the gra-i i
dient of the flow at q is approximated by the

� 4 � 4gradient-flow components d weighted by s :i i i i

Ž .ds s d . 8Ý i i
igF

Ž .Note that in Eq. 5 it is necessary to restrict the
Ž .summation for active nodes elements of F since

activities, and hence I values, are only defined fori j
active nodes. The I values may be interpretedi j
as the activity flow along the neighboring connec-
tion between neuron i and j. It is worth noting as

� 4well that the connection structure I can be de-i j
veloped by means of standard self-organizing pro-
cedures.16 ] 18,9,10

3.2. Following the Gradient

wIn order to realize the planned speed-vector d Eq.
Ž .x w Ž .x8 the control equation of the plant Eq. 1 must

also be taken into account. Let us assume that the
plant is invertible, i.e., there exists at least one j :
Rn =Rn ªRm mappingc satisfying

Ž . Ž . Ž . Ž .dsg q q f q j q, d , 9

where d, qgRn are arbitrary vectors. In other words
Ž . Ž .j q, ? is the right inverse of the function h q, ? s
Ž . Ž .g q q f q ? for every q which is called the inverse-

dynamics of the plant. Using the inverse-dynamics
the static state-feedback control of the plant can be
written as

Ž Ž .. Ž .usj q, k =f q , 10

where q is the plant-state.
Ž .In order to use Eq. 10 in practice we have to

represent j in a suitable way. First, let us fix an
arbitrary point q in the state-space. This point may
be chosen as some discretization point, c . Letl

n Ž .v , . . . , v gR denote k direction vectors kGn ,1 k
which one might think of as geometrical vectors
associated with a particular discretization point.
Furthermore, suppose that the control vectors
u , . . . , u gRm satisfy the equalities1 k

Ž . Ž . Ž .v sg q q f q u , is1, . . . , k . 11i i

Assume too that the k direction vectors v , . . . , v1 k
span the n dimensional space. We now assert that
the k control vectors u , . . . , u are sufficient for1 k
controlling the plant in the state q. To show this,
assume that the plant is to be moved in the direc-
tion d from point q and d is expressed as

k k

Ž .ds a v , with a s1. 12Ý Ýi i i
is1 is1

Note that if there are at least nq1 vectors among
Žthe vectors v that are affine independent i.e., everyi

n.n of those vectors span R , then coefficients that
satisfy Ý a s1 can always be found. Let us there-i i
fore consider the control vector

k

Ž .us a u . 13Ý i i
is1

Ž . Ž .Substituting Eq. 13 into Eq. 1 we have that the
control vector u yields the speed-vector d, meaning

c There may be more than one such mapping. In the degenerate
Žcase one can always find an arbitrary, suitable smooth up to

.some desired degree, etc. mapping.



v Journal of Robotic Systems—19986

that a local approximation of the inverse-dynamics
�Ž .4function is feasible in the implicit form v , u .i i

3.3. The Extended Architecture: Motion-Control

Assume that we are given a particular path-plan-
ning problem and the recurrent network has already
relaxed into a stationary state. The plant’s speed-
vector must then correspond to the gradient of the
equilibrium flow in the starting state so we are
permitted to use the approximation of the gradient
in the starting state developed in section 3.1 given
by dsÝ s d , where d is the approximated gra-ig F i i i

dient at neuron i, that is d sÝ I g , wherei jg N l F i j i ji

Ž .I sw s ys . According to the previous sectioni j i j j i
Ž .if the control vectors u are given jgN andi j i

satisfy

Ž . Ž . Ž .g sg c q f c u 14i j i i i j

then

Ž .u s I u 15Ýi i j i j
jgN lFi

moves the plant into the direction d provided thati

the plant is in state c .d Taking into account thei

coarse coding of the plant-state, i.e., that the state of
� 4the plant is given by the blob of activities s we geti

that the vector

Ž .us s u 16Ý i i
i

which can be used to move the plant along the
approximate gradient d.

Ž . Ž .The computation in Eqs. 15 and 16 fit in well
with the recurrent architecture that computes the
equilibrium flow if we extend the architecture with
control neurons and interneurons. Control neurons
provide control signals and are connected to in-
terneurons via command connections. Interneurons
in contrast correspond to neighboring connections
and monitor the activities that flow along the con-

d Ž .In Eq. 15 the I coefficients may be normalized but accordingi j
Ž .to our numerical experiments Eq. 15 can work equally well.

nections and provide proportional outputs with
Ž .them, so the output of interneuron i, j is given by

s I . Let the command connection that starts fromi i j
Ž .interneuron i, j and ends at control neuron k be

the k th component of u . Then the motion planningi j

and execution procedure is just
Step 1: Develop the coarse coding of the path-

planning task on the recurrent network.
Step 2: Compute the equilibrium flow by acti-

vation spreading.
Step 3: Compute the output of interneurons,

i.e., the directional derivatives of the flow weighted
by the coarse coding activities of the actual plant-
state.

Step 4: Compute the control signal of each con-
trol neuron as a weighted sum of interneuron out-
puts, where the weights are those of the command-
connections.

The corresponding architecture for this is shown
in Figure 1.

3.4. Learning

In this section we will show how control vectors
Ž .satisfying Eq. 15 can be learned by the neural net,

the proposed learning scheme being similar to di-
rect inverse modeling19 ] 21: The control signal and
observed movement produced by the plant in re-
sponse to the control signal provide the input for
learning. However, our method is not simply an-

Žother form of error back-propagation or in control
.theoretical terms not just the method of variations .

The main point of the algorithm is that observed
movements of the plant are represented by an equi-
librium-flow corresponding to the specific external
flow I , when the source is the coarse-coded repre-i

sentation of the initial plant-state and the sink is the
same for the state of the plant after the observed
movement. In this way the algorithm is fully self-
organized and self-contained. The steps of the algo-
rithm are as follows:

Step 1: Develop a coarse coding that corre-
sponds to the state of the plant. Store it as start
activities.

Step 2: Choose a random control signal and
feed it into the plant.

Step 3: Compute the coarse coding of the re-
sulting state of the plant and use it as the target
activity vector.

Step 4: Compute the equilibrium flow accord-
ing to these start and target activities.



vSzepesvari and Lorincz: Integrated Architecture for Motion-Control´ ˝ 7

Figure 1. The architecture of the network. Traversing from the bottom to the top of the
picture one can see four different layers of neurons, whose functions are readily
apparent. The discretizing neurons have spatially-tuned filters that can be formed by
tuning a radial basis function network or using a self-organizing competitive scheme. The
geometrical connections that link discretizing neurons in the first layer represent neigh-
boring relationships and can be developed by Hebbian-learning. As regards functionality,
the start- and target-activities are created on the layer of discretizing neurons by some
recognition modules not mentioned here, and these are relaxed via activation spreading
through the geometrical connections. The interneurons sitting on the geometrical connec-
tions emit a signal proportional to their detected activity flow which go to control
neurons. Besides this they also perform associatve learning with control neurons that
shapes the command connections. This associative learning forms the basis of approxi-
mating the inverse dynamics.

Step 5: Associate the control signal with in-
terneurons weighted by interneuron-outputs.

In Step 5 the signal Hebbian learning rule may
be used, i.e.,

Ž .Du sa s I uyu ,i j i j i i j i j

where 0-a -1 is the learning rate of interneuroni j
Ž .i, j . The learning rate can be either time dependent
or stationary. In principle it is reasonable to choose
a Robbins]Monro type of time dependence22,23 to
ensure the convergence of u to the time-averagedi j
values of the learning samples and also to retain
adaptivity. When using such decaying learning rates
the adaption-rate may become extremely low over
time. However, if the learning rate is kept constant
the adaptivity may be kept above a certain prede-
fined level. In such a case u will be a stochastici j
variable with mean given by the sample average
and deviation magnitude asymptotically propor-

24tional to a .' i j

It can be shown that the sample-average satis-
Ž .fies Eq. 15 if the sampling is representative and if

equilibrium flows satisfy some special conditions.25

Another possible learning method would be to store
the ‘‘best-command-vector-so-far.’’ However, while
this method may be sensitive to state errors and
noise, Hebbian-learning filters out noise without
any difficulty.

4. COMPUTATIONAL RESULTS

In the examples subsequently presented the state-
w xspace is the two dimensional rectangle in 0, 1 =

w x0, 1 , while the control vector of the plant has four
components. This means that we are treating a re-
dundant control problem, the degrees of freedom in
the motor command space being higher than the
degrees of freedom in the task space. As pointed out
by Jordan such redundancy cannot be solved by
error back-propagation: there are an infinite possi-
ble permutations of command errors that lead to the
same error expressed in task coordinates.12 But as
will be seen and should already be clear from the
previous discussion our system is quite capable of
dealing with redundant control tasks.



v Journal of Robotic Systems—19988

The control problem outlined here is a simple
type of sensory-motor control. A simulated camera,
that is a pixel discretization camera, provides the
input for the system and the discretizing neurons
work on the ‘‘image space’’ of the simulated camera
instead of the state-space. However, the ‘‘product’’
of the two discretizations, the discretization gener-

Žated by the camera as a function of the state to the
.image space and the discretization generated by
Žthe neurons as a function mapping the image space

.to neuronal activities is itself a discretization of the
state space. Since neighboring connections reflect
neighboring relationships in the state-space—i.e.,
the discretization is topographic10 —the extra dis-
cretization step does not affect the working of the
model apart from an effect on the fineness of the
product discretization.

Two control problems are now cited for compar-
ison: one with a linear and another with nonlinear
dependence on q. In the linear case the control
components alone move the plant respectively to-
wards north, east, south, and west. The control
equation of the plant is simply given by

qs f u,˙

4 w x2where ugR , qg y1, 1 and

1 0 y1 0fs f s .0 ž /0 1 0 y1

In the second example f is position-dependent in a
non-linear fashion:

cos a ysin aŽ . Ž .f q s f , 170ž /sin a cos a

Ž . Ž .where asa q s2 a 0.5yd , provided that dsmax
2 2Ž . Ž .' q y0.5 q q y0.5 -0.5 and as0, other-1 2

wise. In all the experiments except one when the
effect of a on learning was measured the settingmax

Ž .a spr2 was employed. According to Eq. 17 ,max
the speed-vector of motion is the rotated speed-
vector of the linear case within the circle centered

Ž .on the point 0.5, 0.5 and having a radius of 0.5. The
rotation angle is state dependent—it is pr2 at the

Ž .center point 0.5, 0.5 and decreases with distance
from the center. Outside the circle the rotation is
zero.

The purpose of the trials was to demonstrate
( )i completeness, i.e., the model is capable of

path-planning and execution in the case of nontriv-
ial, nonlinear control problems, and

( )ii learning capabilities, i.e., to compare the
typical results of learned and ‘‘perfectly’’ prepro-

Ž .grammed prewired models.
The initial activities are shown in Figure 2, the

start activities being negative and target activities
being positive, while the equilibrium field gener-
ated by the diffusion process is depicted in Figure 3.

Figure 2. Initial activities. As can be seen the start activities are negative whereas the
target activities are positive. The target and the plant are placed in the opposite corners,
the neuronal discretizing layer being a rectangular array for ease of visualization.



vSzepesvari and Lorincz: Integrated Architecture for Motion-Control´ ˝ 9

Figure 3. A typical relaxed neural activity field. The relaxed equilibrium activities,
corresponding to the external flow shown in Fig. 2, have been plotted here. The plant
should move along the gradient of this equilibrium field.

The target and plant were placed in opposite cor-
ners. Clearly, the initial activities shown in Figure 2
provide a coarse-coded representation of the start
and target configurations.

The results of the learning experiments are pre-
sented in two ways, as speed-vector fields tracked
by the plant and as speed-vectors corresponding to
the control commands of individual interneurons.
Figure 4 shows speed-vector fields for the two dif-
ferent cases. In both the target is always at the lower
left corner of the state-space, whereas the plant’s
position varies over the whole state-space. A
speed-vector of the figure represents the speed of
the plant when the plant is placed at the start-posi-
tion of the vector. Thus paths followed by the plant
ought to be tangential to the depicted speed-vector

Žfield the speed-vector field is always tangential to
. ethe plant path . The left and right columns of

wFigure 4 correspond to perfectly prewired in the
Ž .xsense that defined by Eq. 14 and learned control

commands, respectively, while the upper and lower
rows depict the linear and nonlinear cases. At the
edges of the state-space the speed-vectors point
somewhat inside the region rather than towards the
target. This property is the consequence of the ap-
plied linear gradient estimation and not the path-
planning procedure, the Neumann type boundary
condition having been used in these trials. The sug-
gested procedure restricts the participating direc-

eComplex path-planning tasks are not introduced here since
previous studies4,13,6,5 have already demonstrated the potential
of the method as a viable path-planning procedure.

tions in such a way that the linear combination
lacks an outwardly pointing component. Apart from
this edge effect the speed-vectors point towards the
target. Moreover, from Figure 4 it seems that only
minor differences are detectable when comparing
the prewired and learnt control commands cases.
Notice too that as a result of coarse coding and a
linear gradient estimation the speed-vector field is
continuous, i.e., the trajectory of the plant should be
‘‘smooth.’’

The smoothness feature of Figure 4 is readily
observed in Figures 5 and 6 which show the compo-
nents of the speed-vector, the path length, and com-
ponents of the control vectors versus time, respec-
tively, when the plant is proceeding from one cor-
ner to the opposite one. The corresponding figures
in the conventional discretization scheme should
show discrete time jumps. But, as was noted above,

Ž .the relative smoothness of the curves is a result of
the consistent application of the coarse coding tech-
nique. The residual ‘‘noise’’ in the signals can be
further diminished by enlarging the number of dis-

Žcretizing units which will also decrease the struc-
.tural approximation error of the architecture or by

increasing the sampling rate at which the equation
of motion was simulated. Both figures correspond
to learned control vectors and of the nonlinear plant.

A fairly accurate view of the learning capabili-
ties of the model is given by Figure 7, which illus-
trates those speed-vectors corresponding to the con-
trol commands of individual interneurons. The small

Žcircles in the figure correspond to neurons discreti-



v Journal of Robotic Systems—199810

Figure 4. Speed vector fields. Upper row: linear plant,
lower row: nonlinear plant. Left column: prewired control
command connections, right column: learned control com-
mand connections. The arrows represent the plant-speed
at different starting points when the target is placed in the
lower left corner. The path of the plant started from any
point is always tangential to the speed-vector field shown.

ŽThis means that the plant moves to the target lower left
.corner in a more or less straight line. The magnitude of

the arrows represent the magnitude of the plant speed-
vector at different positions.

.zation points , while connections between neighbor-
ing neurons have been left out. Two interneurons
and thus two control commands are associated with
each connection. The first control command moves
the plant from one discretization neuron to the
other, while the other control command moves the
plant in reverse, from the second discretization neu-
ron to the first. As control commands are four
dimensional, they cannot be easily shown on paper.
Instead both speed-vectors that result from execut-
ing those commands which are at the starting dis-
cretization neurons are shown in the figure. Speed
vectors should be parallel to the corresponding con-
nection in the ideal case. Speed vectors could also

Ž .be learnt almost perfectly both for the linear left
Ž .and nonlinear right control problems. As can be

seen the differences between the subfigures are
pretty minor, the unexpected coincidences being
due to the same set of learning examples having
been applied. Further training would probably lead
to a further improvement in the control command
vectors, as may be inferred from Figure 8 which

shows the learning curves for different non-linearity
Ž .a values cases. However, there may be a theo-max
retical limit of accuracy that depends on the growth
rate of the nonlinearity. After inspecting Figure 9
the results for the speed-vector errors can be seen
after learning under similar conditions has taken
place, with identical training examples but different

Ž .non-linearities a values . The linear growth withmax
increasing a indicates that to retain good preci-max
sion with higher nonlinearities both the training
time and the fineness of discretization should be
suitably increased.

5. DISCUSSION

In the previous section we touched upon the ques-
tion of sensory-motor control. In this situation data
from a sensor-space serves as the input for the
algorithm instead of the state-space. In the example
given the sensor-space was a discretized version of
the state space. In the general case however the
connection between the sensor-space and state-space
is nontrivial. Consider, for instance, a robot manipu-

Ž .lation with more than 3 degrees of freedom k say
in a 3D space, and assume that two cameras moni-
tor the end part of the manipulator. Then the state-
space is k-dimensional while the workspace and
image manifold are both three dimensional. Two
problems may arise if the algorithm works in the
image space. First, the path-planning procedure
could create incorrect paths6 and the learning of
appropriate control command vectors might also
fail. In such a case it would be necessary to repre-
sent the inverse kinematics set-mapping of the plant
that maps workspace points to configuration space
sets,26 and one would also have to use a configura-
tion space representation. Happily, such mappings
can be learnt in a self-organized manner.19,21,27 ] 30

One of the most important questions that can
arise in connection with algorithms is how they
scale up in size. For the present model the basic
question in relation to scaling is that of the number
of neurons and number of connections needed for

Ž .the spreading activation SA procedure. The esti-
mation of the number of discretizing neurons re-
quired to achieve a given performance depends on

Ž .the stability properties of control Eq. 1 and is
beyond the scope of this article. However, the scal-
ing properties of the model can be dealt with quite
easily.

The number of the discretizing neurons is an
exponential function of the dimensionality of the



vSzepesvari and Lorincz: Integrated Architecture for Motion-Control´ ˝ 11

Figure 5. Distance-to-go and components of the speed-vector versus time. The figure
shows the distance left to reach the target, the plant speed and the two components of the
speed-vector of the plant as a function of time while the plant is moving from the upper
right to the lower left corner of the unit square. Path-length values have been multiplied
by 10 for normalization.

Figure 6. Components of control signals versus time. The figure shows the output of
individual control neurons as a function of time while the plant is moving from the
upper right to the lower left corner of the unit square.



v Journal of Robotic Systems—199812

Figure 7. Learned control command vectors for linear
and nonlinear plants. The arrows start from interneurons
situated between discretizing neurons. These represent
the speed-vector of the plant provided the command
vector of the corresponding interneuron in the control
signal. As can be seen the differenced between the two
subfigures are quite minor. The strange similarities be-
tween the two parts are actually due to the same set of
learning examples being adopted; with another choice the
similarities disappear.

space they discretize. Evidently, the exponential
growth strongly limits the available fineness of the
discretization. Let us for the sake of argument as-
sume a robot arm with six joints. If we would like a
tenfold discretization of every joint then the number

of neurons we already need is 106. With a fully
connected, recurrent system the number of connec-
tions rises to 1012. Fortunately, this problem is con-
siderably simplified with the aid of the SA method.

The first advantage of the SA approach is that
the number of neighboring connections with the
number of discretizing neurons does not show the
usual quadratic growth, but rather grows in a linear
fashion. The same holds for the control connections
provided the number of control neurons is fixed.
Hence, the full system is ‘‘linearly connected,’’
which is a very attractive property since it saves
valuable digits in the exponent. Second, the SA
model together with the consistent utilization of
coarse coding provides results beyond the fineness
of the discretization, saying digits in the base.

Ž .The problem of inertia i.e., the dynamics in-
creases the demand for discretizing neurons: if the
dynamics cannot be neglected the brute-force ap-
proach dictates that the state space be the phase
space. In this case the dimension of the state-space
is doubled and storage requirements are quadru-
pled. But the advantage of using the phase space is
that it enables one to plan time- or energy-optimal
trajectories.

Figure 8. Learning curves versus time. The curves depict the time-development of the
error of the approximation to the inverse-dynamics for different types of nonlinearities
Ž .a values . The error is defined as the maximum deviation of the approximatedmax
inverse-dynamics from the corresponding theoretical value.



vSzepesvari and Lorincz: Integrated Architecture for Motion-Control´ ˝ 13

Figure 9. Error versus nonlinearity. Average error of the
approximation to the inverse-dynamics as a function of
the nonlinearity present in the inverse-dynamics after
completing identical training courses. After an initial
phase the curve shows a linear dependence with the rate
of growth of the nonlinearity of the inverse-dynamics.

In the ideal case when the approximation to the
inverse-dynamics is accurate the aforementioned
control method just cancels out the nonlinearities of
the plant. However, the estimate of the inverse-dy-
namics is usually imprecise and thus raises stability
issues. In the examples given stability was achieved
by having a special form of the speed fields to be
tracked. Several methods exist to make the inverse-
dynamics based control more robust. One such
method is to use the inverse-dynamics both in a

Ž .static state-feedback like that in this article and a
dynamic state-feedback position.31 An extension
with PDrPID controllers have also been proposed
in the adaptive control and neural network litera-
ture.32 ] 34 Notice that inverse-dynamics based con-
trol is able to work with plants of any relative
degree provided one starts from the normal form of
the plant.3,35

A question of great importance is the time taken
up in learning. Since the learning processes of dif-
ferent interneuron-control associations are inde-
pendent of each other, having acquired the local
approximants at every point of the state-space, it
allows for instant ‘‘global’’ motion-control since the
local interneuron-motion associations link them-
selves into a whole control sequence. This feature
can indeed promote fast learning.36 Conversely, to
learn an interneuron-motion association may re-
quire a considerable number of similar examples. If
the control equation is highly nonlinear, i.e., the

Ž .r.h.s of Eq. 1 changes rapidly with q and the

examples are selected at random the learning might
require a long time. A more elaborate solution would
be to store information about the precision of con-
trol and apply reinforced exploration.37

6. CONCLUSIONS

We have presented an integrated control algorithm
that is capable of controlling a plant with nonlinear
dynamics in the presence of obstacles. The control
algorithm can work on-line and is highly reactive.
The underlying path planning procedure is based
on a diffusion field generated by the Laplace equa-
tion. The path-planning algorithm is known to be
complete: if the representation of the environment is
accurate and there exists a path from the start to the

Žtarget then the algorithm is capable of finding it in
.fact it is able to find a near optimal path in contrast

with some artificial potential-field approaches.1 The
path-planning procedure is global in its scope1: it
needs a complete representation of the environment.
In the case of incomplete information the algorithm
may choose suboptimal paths. However, if the rep-
resentation of the environment is updated on-line
according to the incoming experiences then the al-
gorithm will find the solution eventually.6,5

In the article the usual path-planning procedure
was extended with local computations to solve the
plant control problem. Although, the resulting algo-
rithm was found to be similar to approximations
based on radial-basis functions, we needed to ex-
tend the basic model by using localized computa-
tions to solve the rendering of direction to control
commands. Associative learning was then intro-
duced for finding the optimal-control command
vectors. The learning algorithm is even capable of
functioning in the case of redundant control when
the dimension of the state-space is lower than the
dimension of the control space. The learning of
connections is efficient since the coarse coding of
the discretization layer enables the training of sev-
eral control-command vectors at the same time. The
learning speed can be further raised by introducing
neighbor training based on neighboring connections
of the discretization layer. Furthermore, the general-
ization capabilities and learning speed of the net-
work could be improved somewhat by introducing
a feedback from the control performance to the
discretization neurons. The neighboring discretiza-
tion neurons with identical control command neigh-
borhoods can be integrated while in regions where



v Journal of Robotic Systems—199814

accuracy does not suffice new discretization neu-
rons might be introduced.38 ] 40 Last, in numerical
studies it was realized that plants with nonlinear
dynamics are readily capable of being controlled
with our proposed approach.

APPENDIX

A. Estimating the Gradient
by Directional Derivatives

Gradient estimation by means of directional deriva-
tives lies at the heart of our control scheme. Hence,
a brief decsription of the underlying gradient esti-
mation will now be given.

Consider two neighboring neurons, i and j and
Ž . Uthe equilibrium solution f* of Eq. 2 . Let f si

Ž .f* c . Then the directional derivative of f* ati
point c with respect to g may be approximated asi i j
the activity difference:

fU yfU
j iU Ž .= f*fg s . 18g i ji j 5 5c ycj i

Similarly, the gradient of f* at the point c can bei
approximated by

< Ž .=f* f = f* g 19Ž .Ýqsc g i ji i j
j

which may be further approximated by substituting
Ž . Ž .Eq. 18 into Eq. 19 :

< U Ž .=f* f g g 20Ýqsc i j i ji

j

which is the final approximation result.

REFERENCES

1. Y. K. Hwang and N. Ahuja, ‘‘Gross motion planning
Ž .—a survey,’’ ACM Comput. Sur., 24 3 , 219]291, 1992.

2. E. D. Sontag, ‘‘Some topics in neural networks and
control,’’ Technical Report ls93-02, Department of
Mathematics, Rutgers University, New Brunswick, NJ
08903, 1993.

3. A. Isidori, Nonlinear Control Systems, Springer-Verlag,
Berlin, Heidelberg, 1989.

4. G. Lei, ‘‘A neural model with fluid properties for
Ž .solving labyrinthian puzzle,’’ Biol. Cybern. 64 1 ,

61]67, 1990.
5. R. Glasius, A. Komoda, and S. Gielen, ‘‘Neural net-

work dynamics for path planning and obstacle avoid-
Ž .ance,’’ Neural Networks, 8 1 , 125]133, 1995.

6. C. I. Connolly and R. A. Grupen, ‘‘On the application
of harmonic function to robotics,’’ J. Robotic Syst.,
Ž .10 7 , 931]946, 1993.

7. T. Poggio and F. Girosi, ‘‘Regularization algorithms
for learning that are equivalent to multilayer net-
works,’’ Science, 247, 979]982, 1990.

8. T. Kohonen, Self Organisation and Associative Memory,
Springer-Verlag, Berlin, 1984.

9. Cs. Szepesvari, L. Balazs, and A. Lorincz, ‘‘Topology´ ´ ˝
learning solved by extended objects: a neural network

Ž .model,’’ Neural Comput., 6 3 , 441]458, 1994.
10. Cs. Szepesvari and A. Lorincz, ‘‘Approximate geome-´ ˝

try representation and sensory fusion,’’ Neurocomput-
Ž .ing, 12 2]3 , 267]287, 1996.

11. Cs. Szepesvari, T. Fomin, and A. Lorincz, ‘‘Self-´ ˝
organizing neurocontrol,’’ Proceedings of ICANN ’94,
Sorrento, Italy, May 1994, pp. 623]626.

12. M. I. Jordan, ‘‘Learning and the degrees of freedom
problem,’’ M. Jeannerod, Ed., Attention and Perfor-
mance, XIII., Erlbaum, Hillsdale, NJ, 1990.

13. D. Keymeulen and J. Decuyper, ‘‘On the self-organiz-
ing properties of topological maps,’’ F. J. Varela and
P. Bourgine, Eds., Toward a Practice of Autonomous
Systems, Proc. of the First European Conf. on Artificial
Life, MIT Press, 1992, pp. 64]69.

14. G. F. Marshall and L. Tarassenko, ‘‘Robot path plan-
ning using VLSI resistive grids,’’ IEEE Proceedings,
Vision, Image and Signal Processing, 141, 267]272, 1994.

15. D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
‘‘Distributed representations,’’ Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition,
Vol. 1: Foundations, MIT Press, Cambridge, MA, 1986.

16. T. Martinetz and K. Schulten, ‘‘A ‘‘neural-gas’’ net-
work learns topologies,’’ T. Kohonen, M. Makisara, O.¨
Simula, and J. Kangas, Eds., Proceedings of ICANN,
Volume 1, Elsevier Science Publishers B.V., Amster-
dam, 1991, pp. 397]402.

17. Cs. Szepesvari, L. Balazs and A. Lorincz, ‘‘Topology´ ´ ˝
learning solved by extended objects: a neural network
model,’’ S. Gielen and B. Kappen, Eds., Proc. of
ICANN ’93, Amsterdam, The Netherlands, September
1993, Springer-Verlag, London, p. 678.

18. T. Martinetz and K. Schulten, ‘‘Topology representing
Ž .networks,’’ Neural Networks, 7 3 , 507]522, 1994.

19. B. Widrow, J. McCool, and B. Medoff, ‘‘Adaptive
control by inverse modeling,’’ 20th Asilomar Conference
on Circuits, Systems and Computers, 1978.

20. D. Psaltis, A. Sideris, and A. A. Yamamura, ‘‘A multi-
layered neural network controller,’’ IEEE Control Syst.
Mag. 8, 17]21, 1988.

21. S. Grossberg and M. Kuperstein, Neural Dynamics of
Adaptive Sensory-Motor Control: Ballistic Eye Move-
ments, Elsevier, Amsterdam, 1986.

22. H. Robbins and S. Monro, ‘‘A stochastic approxima-
tion method,’’ Ann. Mat. Stat., 22, 400]407, 1951.

23. T. Wasan, Stochastic Approximation, Cambridge Uni-
versity Press, Cambridge, 1969.

24. S. Amari, ‘‘Theory of adaptive pattern classifiers,’’
IEEE Trans. Elect. Comput., 16, 299]307, 1967.

25. Cs. Szepesvari and A. Lorincz, ‘‘On learning correct´ ˝
control commands in an integrated neurocontrol ar-



vSzepesvari and Lorincz: Integrated Architecture for Motion-Control´ ˝ 15

chitecture,’’ Technical Report 97-111, Research Group
on Artificial Intelligence, JATE-MTA, 1997.

26. T. Locano-Perez and M. A. Wesley, ‘‘An algorithm for`
planning collision-free paths among polyhedral ob-

Ž .jects,’’ Communications of ACM, 22 10 , 560]570, 1979.
27. M. Kawato, K. Furukawa, and R. Suzuki, ‘‘A hierar-

chical neural-network model for control and learning
of voluntary movements, Biol. Cybern. 57: 169]185,
1987.

28. W. T. Miller, ‘‘Sensor based control of robotic manipu-
lators using a general learning algorithm,’’ IEEE J.
Robotics and Automation, 3, 157]165, 1987.

29. B. W. Mel, ‘‘Murphy: A robot that learns by doing’’
Neural Information Processing Systems, American Insti-
tute of Physics, New York, 1988, p. 544]553.

30. H. J. Ritter, T. Martinetz, and K. J. Schulten, ‘‘Topol-
ogy conserving maps for learning visuomotor coordi-
nation,’’ Neural Networks, 2, 159]168, 1988.

31. Cs. Szepesvari, Sz. Cimmer, and A. Lorincz, ‘‘Dy-´ ˝
namic state feedback neurocontroller for compen-

Ž .satory control,’’ Neural Networks, 1997 in press .
32. J. Craig, P. Hsu, and S. Sastry, ‘‘Adaptive control of

mechanical manipulators,’’ Int. J. Robotic Research,
Ž .6 2 , 16]28, 1987.

33. H. Miyamoto, M. Kawato, T. Setoyama, and R. Suzuki,
‘‘Feedback-error-learning neural network for trajec-
tory control of a robotic manipulator,’’ Neural Net-
works, 1, 251]265, 1988.

34. F. L. Lewis, K. Liu, and A. Yesildirek, ‘‘Neural net
robot controller with guaranteed tracking perfor-

Ž .mance,’’ IEEE Trans. on Neural Networks, 6 3 , 703]715,
1995.

35. S. Sastry and M. Bodson, Adaptive Control—Stability,
Convergence and Robustness, Prentice Hall, Englewood
Cliffs, NJ 1989.

36. A. Benveniste, M. Metivier, and P. Priouret, Adaptive´
Algorithms and Stochastic Approximation, Springer Ver-
lag, New York, 1990.

37. P. D. Scott and S. Markovich, ‘‘Learning novel do-
mains through curiosity and conjecture,’’ Proceeding of
the Eleventh IJCAI, Detroit, MI, 1989, pp. 669]674.

38. B. Fritzke, ‘‘Let it grow—self organizing feature maps
with problem dependent cell structure,’’ T. Kohonen,
M. Makisara, O. Simula, and J. Kangas, Eds., Proceed-¨
ings of ICANN, Vol. 1, Elsevier Science Publishers
B.V., Amsterdam, 1991, pp. 403]408.

39. P. van der Smagt, F. Groen, and F. van het Groe-
newoud, ‘‘The locally linear nested network for robot
manipulation,’’ Proceedings of the IEEE Int. Conf. on
Neural Networks, Orlando, Florida, May 1994, IEEE
Press, pp. 2787]2792.

40. Sz. Kovacs, G. J. Toth, R. Der, and A. Lorincz, ‘‘Out-´ ´ ˝
put sensitive discretization for the help of genetic
algorithm with migration,’’ Neural Network World, 6,
101]107, 1996.


